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Abstract—3-Alkyl-1,2-cyclopentanediones 1 are transformed into 2-alkyl-2-hydroxyglutaric acid c-lactones 3 in up to 83% isolated
yields and up to 96% ee, affording a simple access to many bioactive compounds, including diacylglycerol lactones (DAG-lactones).
� 2006 Elsevier Ltd. All rights reserved.
O

R

OH
OH

O
R

O1

1:1.6:2.5

NaOH2.

1. Ti(OiPr)4/(+)-DET/tBuOOH
Chiral 2-alkyl-5-oxotetrahydrofuran-2-carboxylic acid
(2-alkyl-2-hydroxyglutaric acid c-lactone) units are pres-
ent in the structures of various natural compounds with
potential pharmacological applications.1 Additionally,
monoprotected 5-bis(hydroxymethyl)tetrahydro-2-fura-
nones are convenient templates for diacylglycerol lac-
tones (DAG-lactones), which are found to be more
potent protein kinase C inhibitors than the parent natu-
ral compounds, and can be regarded as promising thera-
peutic agents for treatment of cancer, diabetes, etc.2

There are several approaches which describe methods
for the synthesis of these chiral tertiary c-lactone struc-
tures, including enzymatic desymmetrization of parent
esters3 and chemical synthesis from natural chiral com-
pounds.1b,4 However, there are only a few examples of
the asymmetric chemical synthesis of related structures,
using a chiral auxiliary,5 chiral reagent1a and chiral
catalyst.1d,2a

We have previously found that 3-alkyl-cyclopentane-
1,2-diones 1, are oxidized with the chiral Ti(O-i-Pr)4/
tartaric ester/t-BuOOH complex resulting in a mixture
of different oxidation products, and amongst them
2-alkyl-5-oxotetrahydrofuran-2-carboxylic acids 3 in
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28–44% yields.6 We have now developed a simple
and practical method for the synthesis of enantiomeri-
cally enriched 2-alkyl-5-oxotetrahydrofuran-2-carb-
oxylic acids 3, which may serve as a base for various
substituted lactones, including templates for DAG-
lactones and their analogues (Scheme 1).

While oxidizing 3-substituted cyclopentane-1,2-diones
with the Ti(O-i-Pr)4/tartaric ester/t-BuOOH complex in
a 1:1.6:2.5 ratio the main oxidized products appear in a
complex mixture (mixture A), containing 3-hydroxyace-
tals 2, lactones 3, mono-esters 4, dimeric esters 5 (charac-
teristic only for 1d and 1e) and keto acid 6, which
required a laborious chromatographic separation
(Scheme 2).

The mixture A contained two types of esters, in which 3
and 4 are base sensitive and 5 is acid sensitive. Hence, a
base/acid work-up procedure was applied in order to
O
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Table 1. Oxidation of 3-alkyl-cyclopentane-1,2-diones 1 with the
Ti(O-i-Pr)4/(+)-tartaric ester/t-BuOOH complex7

Entry Substrate Isolated lactone acid 39 Keto acid 6

Yield (%) ee (%)

1 1aa 75(60b) 93(99b) 6
2 1b 72 93 10
3 1c 75 96 3
4 1d 69c 94 —
5 1e 71c 95 3
6 1fa 83 96 6

a Both enantiomers were synthesized.
b From a 50 g scale experiment after recrystallization.
c Together with dimer 5.
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simplify it and thus obtain lactone acids 3 by crystalliza-
tion or by simple chromatography. Thus, basic treat-
ment of the mixture A converted lactones 3 and
mono-esters 4 to the same diacid salt 7. Furthermore,
the mono-oxidation product 2, which is always present
after oxidation in mixture A6b was also oxidized with
the excess t-BuOOH in the mixture during basic work-
up and also formed salt 7 (this transformation was con-
firmed in a separate experiment with isolated acetal 2).
As a result, a three component mixture B was formed,
which consisted of salt 7, dimer 5 (in the case of 1d
and 1e, 17% and 13%, respectively), and keto acid 6
(as a decarboxylation product of lactone acid 3). When
mixture B was treated with acid, lactone 3 was formed as
the main product.7 Dimer 5 was hydrolyzed under the
acidic conditions (confirmed in a separate experiment
in the case of 5e, using a mixture of AcOH–i-PrOH–
H2O 4:4:1)8 also resulting in lactone acid 3. Lactone acid
3 and achiral keto acid 6 which are formed after acidifi-
cation of mixture B were easily separable by chromato-
graphy or crystallization. The results obtained are
presented in Table 1.

According to the data obtained, the isolated yield of 2-
alkyl lactone acids 3 was in the range of 69–83%. Also,
the process is highly enantioselective (ee of the isolated
lactone acids 3 is in the range of 93–99%).

Lactone acid 3c is a convenient precursor of DAG-lac-
tone template 8c.2,3b Thus, benzyloxymethyl lactone
acid 3c was reduced with borane dimethylsulfide com-
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plex4a yielding the enantiomeric DAG-lactone template
in one step and with a good yield (76%)10 (Scheme 3).

According to the optical rotation, the absolute configu-
ration of 8c is in accordance with that from our previous
determinations of 2-methyl-5-oxotetrahydrofuran-2-car-
boxylic acid 3a6b and homocitric acid lactone11 from the
asymmetric oxidation; as expected, from diketone 1c
with (+)-diethyl tartrate, lactone acid 3c with R-config-
uration and lactone 8c with S-configuration were
obtained.4b

The method described opens a simple, straightforward
and highly efficient procedure for synthesizing enantio-
meric 2-alkyl-2-hydroxyglutaric acid c-lactones, DAG-
lactone templates and other compounds of similar
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structure from 3-alkyl-1,2-cyclopentane diones. The
method also has preparative utility.
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